Phased Array Technique for Low Signal-To-Noise Ratio Wind Tunnels, Phase II

Completed Technology Project (2015 - 2017)

Project Introduction

Noise measurement of aerospace vehicles is difficult and usually requires expensive, specialized facilities. With the proliferation of UAVs there is need for noise data, both for ISR and non-military vehicles. Wind tunnel testing is common and much less expensive. The innovation is a novel in-flow microphone array combined with the start of the art Functional Beamforming algorithm that makes it practical to measure UAV noise in a non-acoustic wind tunnel. The proposal calls for further development of the measurement technique so that it can be commercialized as a service using the Kirsten Wind Tunnel at the University of Washington.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
OPTINAV, Inc.	Lead Organization	Industry	Bellevue, Washington
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
Ohio	Washington

Phased Array Technique for Low Signal-To-Noise Ratio Wind Tunnels, Phase II

Table of Contents

Project Introduction Primary U.S. Work Locations	1
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Phased Array Technique for Low Signal-To-Noise Ratio Wind Tunnels, Phase II

Completed Technology Project (2015 - 2017)

Project Transitions

May 2015: Project Start

May 2017: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137787)

Images

Briefing Chart

Phased Array Technique for Low Signal-To-Noise Ratio Wind Tunnels Briefing Chart (https://techport.nasa.gov/imag e/130539)

Final Summary Chart Image Phased Array Technique for Low Signal-To-Noise Ratio Wind Tunnels, Phase II Project Image (https://techport.nasa.gov/imag e/127462)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

OPTINAV, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Robert Dougherty

Co-Investigator:

Robert S Dougherty

Small Business Innovation Research/Small Business Tech Transfer

Phased Array Technique for Low Signal-To-Noise Ratio Wind Tunnels, Phase II

Completed Technology Project (2015 - 2017)

Technology Areas

Primary:

- TX15 Flight Vehicle Systems
 □ TX15.1 Aerosciences
 □ TX15.1.8 Ground and
 Flight Test
 Technologies
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

